
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 2, April - May, 2016
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 117

Experience of Using Formal Concept Analysis in Supporting Experience of Using Formal Concept Analysis in Supporting Experience of Using Formal Concept Analysis in Supporting Experience of Using Formal Concept Analysis in Supporting

Software Testing ActivitiesSoftware Testing ActivitiesSoftware Testing ActivitiesSoftware Testing Activities

Pin Ng

 Hong Kong Community College, Hong Kong Polytechnic University, Hong Kong

Abstract
Formal concept analysis (FCA) provides a theoretical foundation

for systematically arranging individual concepts of a given

context into hierarchically ordered conceptual structure. The

technique has been applied to solve several software engineering

problems, such as restructuring program codes, identifying class

candidates in object oriented design, and re-engineering class

hierarchies. In relation to software testing, FCA can be used for

determining a minimum number of test cases which can exercise

the given set of test requirements. The FCA mechanism is

particularly useful in supporting model-based software testing.

Keywords: Formal Concept Analysis, Software Testing.

1. Introduction

Formal Concept Analysis (FCA) is a mathematical

technique for clustering objects that have common discrete

attributes [4]. The technique formulates concepts in terms

of objects and their associated attributes, and provides a

systematic way of combining and organizing individual

concepts of a given context into a concept lattice. FCA has

been applied to several software engineering problems [10],

such as restructuring the code into more cohesive

components, identifying class candidates, locating features

in the code by means of dynamic analysis, and

reengineering class hierarchies

Software testing is an essential part of software

development for the purposes of quality assurance,

reliability estimation, and verification and validation.

However, software testing is an extremely costly and time

consuming process [5]. In the context of software testing,

FCA can be applied to associate a set of test scenarios (as

formal objects) with a set of test requirements (as formal

attributes) and organize them to form a concept lattice. By

analyzing the concept lattice structure, we can determine a

minimal set of test scenarios with adequate test coverage.

This could help to save the cost in test cases execution, and

thus, reduce the cost of software development.

2. An Overview of FCA

FCA provide a systematic way for formulating concepts in

terms of formal objects and their associated formal

attributes [4]. With FCA, the individual concepts are

organized and depicted in form of a hierarchically ordered

conceptual structure, known as concept lattice. As a simple

illustration, by considering a set of integers {1, 2, 3, 4} and

a set of properties {odd, even, prime}, Table 1 shows a

simple context table that defines the relationship between

the set of integers and their associated properties.

Table 1: A simple context table

x4

xx3

xx2

x1

primeevenoddnumber

With the notion of FCA, a concept is an ordered pair

formed by clustering a subset of formal objects (integers in

the example) with a subset of formal attributes (properties

in the example) that are commonly shared by the objects.

For example, the ordered pair ({2, 3}, {prime}) forms a

concept because the integers ‘2’ and ‘3’ commonly share

the property ‘prime’; or equivalently, the property ‘prime’

is valid to the integers ‘2’ and ‘3’ only. Based on the

subset relation among the elements of the concepts, a

concept lattice can be derived. For example, with reference

to the context table in Table 1, the corresponding concept

lattice is depicted in Figure 1.

The concept lattice can serve as a natural hierarchical

ordering of concepts, in which the concepts at a higher

level are considered as superconcept to those subconcepts

at the lower part of the hierarchy. The “superconcept-

subconcept” relation is useful in analyzing software

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 2, April - May, 2016
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 118

artifacts. For instance, in object-oriented software design,

the “superconcept-subconcept” relation implies the

inheritance relationship among the superclasses and

sublcasses.

(∅, {odd, even, prime})

({1, 2, 3, 4}, ∅)

({2, 4}, {even})

({2, 3}, {prime})

({1, 3}, {odd})

({3}, {odd, prime})({2}, {even, prime})

Fig.1 A concept lattice

The concept lattice structure is a useful tool for data

analysis, knowledge discovery, and information retrieval.

In the domain of software engineering, FCA has typically

been applied to reengineering, refactoring and design

recovery. Tilley et al. [10] did a survey and classified a

broad collection of research work regarding the application

of FCA in various activities of software engineering:

• Requirement analysis: Use cases are commonly used in

requirements elicitation and analysis. By considering

the use cases as formal objects and the nouns identified

within the requirement text as formal attributes, the

corresponding concept lattice forms the basis of a class

hierarchy.

• Component retrieval for software reuse: FCA has been

used as a formal mechanism in supporting the retrieval

of software components from a software library. The

software components are indexed by keywords based

on FCA.

• Formal specification: With reference to the static

structure of a formal specification, by considering each

schema as a formal object and the individual mark-up

elements as formal attributes, the formal specification

can be navigated and explored visually with FCA.

• Dynamic analysis: By analyzing the dynamic aspects of

software systems with FCA, specific parts of the

software architecture related to use cases can be

recovered.

• Analyzing legacy system: The general approach is to

consider program functions and data structures as

formal objects and formal attributes, respectively, for

examining the configuration structure of legacy systems

with FCA and then deriving object-oriented models

from the legacy systems.

• Reengineering class hierarchies: FCA has been applied

in reorganizing class hierarchies and recovering design

patterns by considering a formal context where the

formal objects are methods and the formal attributes are

classes.

3. Software Testing with FCA

Software testing is an important activity in software

development for facilitating quality assurance, reliability

estimation, and verification and validation. However,

software testing usually incurs high cost and time

consumptions [5]. As a result, model-based testing was

advocated for [1, 11] advocated for improving the

efficiency and effectiveness of test cases generation.

Model-based testing is a system testing technique that

derives a suite of test cases from a system model

representing the behavior of a software system. By

executing the set of model-based test cases, the

conformance of the target system to its specification can be

validated.

One commonly used system model for model-based testing

is state machine model [2, 11]. State machine-based

specification models a software system with a number of

states that the software system can achieve, and the

transitions among these states. Each feasible path of

transitions [2] derived from a state machine model

represents an operational scenario of the software system.

Therefore the instances of the operational scenarios will

form a set of test scenarios for software testing. However,

since cycles in the state machine model may lead to infinite

number of feasible paths of transitions, exhaustive testing

is deem impossible. One important issue is to determine

which feasible paths should be selected for software testing.

A default criterion for designing test cases with reference

to state machine model is that all transitions in the model

are covered by the test executions. This is called the all-

transitions coverage criterion [11] which means each

transition specified in the state machine model is triggered

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 2, April - May, 2016
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 119

at least once by executing the test cases. In [6], a formal

mechanism has been developed, which is theoretically

based on FCA, for selecting a reduced set of test scenarios

that can satisfy the all-transitions coverage criterion.

Specification of

test suiteexpected results

minimal set of

test scenarios

State machine

model

Concept

lattice

analysis of

transition

coverage

test scenarios

Scenario s1: t01 → t03

Scenario s2: t01 → t02 → t06 → t07

Scenario s3: t01 → t02 → t04 → t05 → t06 → t07

Scenario s4: t01 → t02 → t04 → t08 → t09 → t07
identified

scenarios

Fig. 2 Selecting test scenarios with FCA

Figure 2 summarizes the process of the mechanism. First,

we start with a state machine model of a designated system.

By traversing the state machine model, we can discover a

set of possible test scenarios. Next, we apply FCA to

analyze the formal context of the test coverage relationship

between the set of test scenarios and the set of transitions

specified in the state machine model. The outcome is a

minimal set of test scenarios for software testing.

The methodology of our approach [7] involves five steps

together with a set of pre-conditions and post-conditions

which are related to the applicability of our approach in

real situation.

Pre-conditions:

• The software functional requirements are expressed in

form of state machine based specification;

• The feasible transition paths specified in the state

machine based specification can be executed with the

state changes in the target system observable.

Post-conditions:

• The derived test scenarios and the expected results are

expressed with the terminology used in the user’s

context;

• Verdicts of the testing results can be obtained by

comparing the running results with the expected

results.

Steps:

Step 1: Deriving test scenarios: given a state machine

based specification, by traversing the state

machine model, a set of feasible transition paths

can be derived as the test scenarios for software

testing purposes.

Step 2: Specifying transition coverage: in the context of

transition coverage, FCA is applied to associate a

set of test scenarios (as formal objects) with a set

of transitions (as formal attributes) specified in a

state machine model.

Step 3: Building concept lattice: a set of concepts can be

formed by analyzing the transition coverage of the

test scenarios. The concepts will be organized

hierarchically to form a concept lattice.

Step 4: Determining minimal set of test scenarios: by

utilizing the properties of concept lattice, we can

incrementally determine a minimal set of test

scenarios with adequate test coverage.

Step 5: Specifying the test suite: the selected minimal set

of test scenarios, together with the expected

running results, are specified to form a

specification of the test suite for testing the target

system.

Furthermore, during whole software development life cycle,

changes and maintenance of software requirements needed

to be carefully handled. When software requirements

change, the corresponding test scenarios for software

testing will also evolve. Through incremental updating the

concept lattice structure, our approach can also support

incremental updates of the minimal test suite for evolving

software requirements.

4. Related Work

In relation to software testing, Tallam and Gupta [9] also

adopted FCA to present a Delayed-Greedy heuristic for

selecting the minimum number of test cases for testing a

given set of testing requirements. However, because of the

involvement of attribute reduction procedure, their

approach may not support incremental update of the test

suite for the situations that when some new test cases have

been derived from evolving software requirements.

Sampath et al. [8] have also applied FCA in test suite

reduction for web applications testing. Their approach

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 2, April - May, 2016
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 120

considers each of the URLs used in a web session as a

formal attribute and each web session as a formal object

which constitutes to be a test case. The reduced test suite is

derived by selecting those test cases associated with the

strongest concepts (the concept nodes that are just above

the bottom-most concept node in the concept lattice).

Although the method can support incremental selection of

test cases, the resultant test suite may not be minimal since

redundancy may still exist among the strongest concepts.

By utilizing the incremental mechanism for updating the

concept lattice structure [7], our approach can iteratively

identify any test scenarios which turn out to be redundant

when new test scenarios are added. Those redundant test

scenarios will be removed in order to maintain the test

suite minimal.

Genetic algorithms are search techniques based on natural

genetic and evolution mechanisms for solving optimization

problems. Genetic algorithms typically start with a random

population of solutions, called chromosomes. Then, the

initial solution undergoes a series of recombination and

mutation processes and evolves into a target solution. In

relation to software testing, genetic algorithms have been

applied in test data generation. In particular, Doungsa-ard

et al. [3] applied genetic algorithms in generating test data

from state machine model. The chromosome used in their

method is a sequence of events that can trigger the

transitions specified in the given state machine model.

However, the coverage of transitions varies and depends

on the length of chromosome, and thus, their method

cannot always achieve full coverage of transitions. Our

research work, by analyzing the properties of the concept

lattice structure, can be used for checking the adequacy of

test coverage [7] so as to ensure that the selected test

scenarios can satisfy the all-transition coverage criterion.

5. Conclusion

FCA provides a mathematical foundation for combining

and organizing individual concepts of a given context to

form a concept lattice. This paper summarized the

experience of using FCA in supporting software testing.

The FCA mechanism is particularly useful in supporting

model-based software testing.

Our approach makes use of the concept analysis

mechanism to support incremental reduction of model-

based test suite [7] with reference to state machine model,

which is used for modeling the functional requirements of

software systems. By executing a set of model-based test

scenarios, the conformance of the target system to its

requirements can be tested. In analyzing the test coverage,

FCA works as a sound mathematical foundation for

analyzing the association between the model-based test

scenarios and the coverage requirements for determining a

minimal set of test suite.

The two major advantages of our approach are:

(1) Guidance of test case design: with reference to the state

machine based specification, test scenarios can be derived

based on the feasible transition paths. This could help the

development team in designing the test cases and preparing

the test review.

(2) Cost saving: research studies show software testing is

an extremely costly and time consuming process [5]. Our

approach is able to determine a minimal set of test

scenarios whilst maintaining adequate test coverage. This

could save the cost in test cases execution, and thus, save

the cost of software development.

References

[1] R.V. Binder, Testing Object-Oriented Systems-Models,

Patterns, and Tools, Object Technology. Addison-Wesley,

2000.

[2] L.C. Briand, Y. Labiche, , and J. Cui, “Automated support

for deriving test requirements from UML statecharts”,

Software and Systems Modeling, vol. 4, no. 4, 2005,

pp.399–423.

[3] C. Doungsa-ard, K. Dahal, A. Hossain, T. Suwannasart,

“Test Data Generation from UML State Machine Diagrams

using GAs”, Proceedings of International Conference on

Software Engineering Advances, ICSEA 2007, pp. 47–53.

[4] B. Ganter and R. Wille, Formal Concept Analysis:

Mathematical Foundations, Springer-Verlag, 1999.

[5] M.J. Harrold, “Testing: a roadmap”, ICSE - The Future of

Software Engineering Track, Limerick, Ireland, 4–11 June

2000, pp.61–72.

[6] P. Ng and R.Y.K. Fung, “A Concept Lattice Approach for

Model-based Test Suite Reduction”, Journal of Electronics

and Computer Science, vol.10, no. 2, ISSN 1229-425X,

2008, pp.105-112.

[7] P. Ng, R.Y.K. Fung, and R.W.M. Kong, “Incremental

Model-based Test Suite Reduction with Formal Concept

Analysis”, Journal of Information Processing System, vol.6,

no. 2, ISSN 1976-913X, 2010, pp.197-208.

[8] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S.

Greenwald, “Applying Concept Analysis to User-Session-

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 4, Issue 2, April - May, 2016
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 121

Based Testing of Web Applications”, IEEE Transactions on

Software Engineering, vol.33, no.10, 2007, pp.643–658.

[9] S. Tallam and N. Gupta, “A concept analysis inspired greedy

algorithm for test suite minimization”, The 6th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering PASTE '05, 2005, vol.31

no.1, pp.35– 42.

[10] T. Tilley, R. Cole, P. Becker, and P. Eklund P, “A survey of

formal concept analysis support for software engineering

activities”, Formal Concept Analysis, LNAI 3626, Ganter et

al. (eds.), Springer-Verlag Berlin Heidelberg, 2005, pp. 250–

271.

[11] M. Utting and B. Legeard, Practical Model-Based Testing:

A Tools Approach, Morgan Kaufmann, 2007.

